Current-mode Driving Schemes for AMOLED Display & SIMO PMICs

Gyu-Hyeong Cho

October 10th, 2012

KAIST
Dept. of EECS,
Circuit Design &
System Application
Laboratory

Contents

- Introduction
- Feedback Driving Method
 - -DFFC Driver
- Feedforward Driving Methods
 - -TCF Driver
 - -Push-Pull TCF Driver
- Real-time Image Sticking Compensation Methods

PMIC

Motivation (1/2)

High Contrast

Natural
Color AMOLED

Wide Viewing Angle

(Active Matrix Organic Light Emitting Diode)

Thin

Response

Fast

Low Power Consumption

Motivation (2/2)

AMOLED System

Introduction (1/2)

■ Data driving schemes for AMOLED displays

Introduction (2/2)

■ Data driving schemes for AMOLED displays

Conventional Driving Scheme							
	Analog Voltage	Analog Current	Digital ARG	Digital TRG	Voltage Feedback	Current Feedback	Hybrid PWM
Threshold Voltage Compensation	Good	Good	-	-	Good	Good	-
Mobility Compensation	Poor	Good	-	-	Good	Good	-
Driving Speed	Fast	Slow	Fast	Fast	Slow	Medium	Fast
Driving Accuracy	Medium	Good	Poor	Medium	Medium	Medium	Medium
Luminance Uniformity	Bad	Good	Good	Medium	Medium	Good	Medium

High Speed Analog Current Driving Method
High Driving Accuracy & Speed Current Feedback Method

Part I

Current-mode AMOLED Drivers: DFFC (Direct-type Fast Feedback Current) Driver

Block Diagram for FFCD

■ Conceptual diagrams for Fast Feedback Current Driver(FFCD)

Feedback driver: Current sensing & comparison, loop compensator and error amp.

Direct-type Fast Feedback Current (DFFC) Driver

- $V_{B2} < V_{th,OLED}$
- OLED turns off during feedback loop operation

Delay Reduction from Capacitance

- Move 2nd,3rd poles to higher freq.
- Wider BW, faster driving speed

Requirement for Min. GBW

Display Resolution	Driving Accuracy	1-Horizontal time (T _H)	Min. Gain-BandWidth (ω _{GB,min})
WXGA (1280 X 800)	8b	20μs @60Hz	50kHz
FHD (1920 X 1080)	8b	15μs @60Hz	66kHz

Adaptive Freq. Compensation

C_C Selection Rule

- Compensation capacitor (C_C) array
- Cc from GBW and PM boundary conditions
- Divide 7 ranges according to I_{DATA}

Loop Gain with Full IDATA Range

EECS, KAIST

Circuit Design & System Application Laboratory

Measurement Result (Data Transition)

- Data current range from 10nA to 2.55µA
- Settling time < 11µs

Part II

Current-mode AMOLED Drivers: TCF (Transient Current Feedforward) Driver

TCFD (1/15)

Introduction of the TCC

TCFD (2/15)

Realization of the TCC

EECS, KAIST

Circuit Design & System Application Laboratory

TCFD (3/15)

(Panel application)

TCFD (4/15)

Display Panel Emulation:

TCFD (5/15)

Driver Architecture with TCFD and Path Exchanger

TCFD (6/15)

<u>Stability</u>

$$z_{o,N1} \approx \frac{1}{A(s)} \cdot \frac{1}{g_{m,TFT}} \cdot \frac{\left(1 + s \frac{C_{pp}}{g_{m,M1}}\right)}{\left(1 + s \frac{C_{pp}}{g_{m,TFT}}\right)}$$

$$\begin{split} LG_{TCFD} &= \frac{z_{o,N1}}{\frac{1}{g_{m,M2}} + r_{o,IB}} / / \frac{1}{sC_{pp}} \cdot A(s) \\ &\approx \frac{1}{g_{m,TFT}r_{o,IB}} \cdot \frac{\left(1 + sC_{pp}r_{o,IB}\right) \cdot \left(1 + s\frac{C_{pp}}{g_{m,M1}}\right)}{\left(1 + s\frac{C_{pp}}{g_{m,TFT}}\right) \cdot \left(1 + s\frac{C_{pp}}{g_{m,M2}}\right)} \end{split}$$

The loop gain is always below 0 dB

TCFD (7/15)

Verification by Simulation

 I_{DATA} effects on the loop gain $(C_{pp} = 40 \text{ pF})$

LG < 0dB!!

 C_{pp} effects on the loop gain $(I_{DATA} = 100 \text{ nA})$

TCFD (9/15)

Driving Speed

Step responses of the TCF driving $(V_{PC} = 300 \text{ mV}, \text{Load} = 6 \text{ kohm}, 40 \text{ pF}, \text{SCAN} = 5 \mu\text{s})$

10 us of driving time and 5 nA error !!!

Error currents at fixed driving time $(V_{PC} = 300 \text{ mV}, \text{Load} = 6 \text{ kohm}, 40 \text{ pF})$

Part III

Current-mode AMOLED Drivers: PP-TCF (Push-Pull Transient Current Feedforward) Driver

PP-TCF Data Driver (1/15)

- **■** Conceptual Diagram of Push-Pull TCF Driver
- -Complete push-pull function for output currents
- -PFB gain control for removing undulation phenomena in pixel currents

PP-TCF Data Driver (2/15)

■ Detailed Schematic for PP-TCF Driver

PP-TCF Data Driver (4/15)

■ Functional Diagram of Prototype Driver IC

Various functions for evaluating the performances of PP-TCF driver

PP-TCF Data Driver (5/15)

■ Positive Feedback Loop (PFB) Gain Control (1)

PFB gain control for removing undulation phenomena in pixel currents

PP-TCF Data Driver (6/15)

■ Positive Feedback Loop (PFB) Gain Control (2)

PFB gain control for enhancing pixel current settling (IDATA = 3uA, panel parasitic 2kOhm/ 60pF)

<u>Conceptual Diagram for</u> <u>PFB Gain Control</u>

DAMP Control 5

$$A_{PFB.DAMP} = A_O \times \frac{A_1}{1 + M \cdot G_{DAMP} \cdot A_1}$$
$$= \frac{A_{PFB}}{1 + M \cdot G_{DAMP} \cdot A_1}$$

Simulation Results

PP-TCF Data Driver (7/15)

■ Positive Feedback Loop (PFB) Gain Control (3)

Simulated driving waveforms with/ without PFB gain control (IDATA = 1 to 5uA, panel parasitic 2kOhm/ 60pF)

PP-TCF Data Driver (8/15)

■ Current Pulling Function for Enhancing Data Current Settlement (1)

Complete push-pull function for output currents

PP-TCF Data Driver (9/15)

■ Current Pulling Function for Enhancing Data Current Settlement (2) Fast current sense block for current pulling operation

Fast Current Sense Circuit

Conv. Current Sense Circuit

PP-TCF Data Driver (12/15)

■ Measurement results (1)

Pixel current settling times improved by current pulling function (IDATA transitions from 4.98uA to 60nA, VPRC= 0.4 to 1.2V, 0.2V step, panel parasitic 4kOhm/ 90pF)

PP-TCF Data Driver (14/15)

■ Measurement results (3)

Waveforms for various data current levels: High to low transitions and low to high transitions of data currents (data current = 20nA to 4.98uA, V_{PRC} = 0.7V, parasitic load = 4kOhm/90pF)

PP-TCF Data Driver (15/15)

■ Performance summary

Process	0.35 μm CMOS (1P 4M)		
Operation voltage	3.3 V		
Data current range	20 nA to 4.98 μA		
Gray scale	8 bit (16.8 million colors)		
Maximum driving load (Panel parasitics)	4 kΩ / 90 pF (Full-HD)		
Settling time	≤ 6 μs		
Static current	4.5 μA / Channel		
Occupation area	$60 \times 308 \ \mu m^2 / 2 \ Channels$		

- □ Appropriate for FHD AMOLED displays
 - -Low power consumption
 - -Stable operation at high data currents

Part IV

Real-time Image Sticking Compensation using Current Driving

OLED Degradation

- Differential aging dependent on sub-pixel.
- Prolonged display of static image (burn-in)
- RGB have different degradation curves.

Conventional Image Sticking Compensation

<기존 전압 구동용 IS 보상회로>

- ✓ TFT variation 문제를 해결하더라도, OLED 소자 자체의 시변 열화 특성으로 인해 잔상(Image Sticking)효과를 유발.
- ✓ OLED의 양단 전압이 열화에 따라 증가하는 현상을 이용한 Electrical Feedback 방식이 연구되고 있음.
- √ 기존 연구 방식들은 모두 전압 구동용 보상회로

EECS, KAIST

OLED Degradation Sensing

<OLED degradation Sensing>

EECS, KAIST

Real-time Compensation using Current Driving (2/7)

■ IS 보상 방식 비교

	Compensation Method using Voltage Driving	Real-time Compensation using Current Driving
보상전류	별도의 큰 전류	작은 데이터 전류
열화 가속	Fast	Slow
메모리 크기	Large (Vth, μ, OLED)	기존의 1/3 이상 감소 (OLED)
보상시간	Long time	Real time

Real-time Compensation using Current Driving (3/7)

- 1:2 DeMUX operation
- Track and Hold type pixel
- **TCF driver**
- **■** Current DAC with Reference Current Calibrator

EECS, KAIST

Hybrid Data Driver

- 1. Read data-line voltage by ADC (OLED compensation)
- 2. Store by line voltage information of each pixel at memory
- 3. φ1, VDAC & Amp. pre-charge data-line by pre-stored information.
- 4. φ2, CDAC provides data current to pixel. (TFT compensation)

Block Diagram of Hybrid Data Driver

- CDAC sharing scheme
- VDAC = CDAC + I-V Converter
- DATA1 for voltage driving, DATA2 for current driving

Real-time Compensation using Dual Data Driving (3/4)

Implementation ⊸ V_{REF} **ADC** Memory **I**DATA Φ2 Video n Data ISC Algorithm Channel $R_P \leq$ ✓ Pre-charging voltage is made by using CDAC at each channel.

Pixel

Digital Processing Algorithm

- DATA1 and DATA2 for hybrid data driving
- α-LUT for OLED compensation

Data Transition

- Data driving waveforms for various current levels
- High current level (1uA~ 5uA, 1uA step)

Data Transition

- Data driving waveforms for various current levels
- Low current level (5nA~ 40nA)

Parameter Variation with Degradation Rate

- Changes of I_{DATA2} and ΔV_{OLED} by compensation algorithm
- I_{DATA2} @ $\alpha = 0\% = 100 nA$

Summary

- Feedback (DFFC) driver
 - ✓ Range of data currents from 10nA to 2.55uA
 - √ WXGA-sized panel load of 1.5kOhm/ 100pF.
- Feedforward (TCF, ITCF, PP-TCF) drivers
 - ✓ Full range of data currents from sub-10nA to 5µA
 - √ Various panel load condition from XGA to FHD-sized panel
- Real-time image sticking compensation methods
 - ✓ Compensate the luminance degradation of OLEDs
 - ✓ Compensate the variation of the driving TFT by current driving

PMIC

Single-Inductor Multiple-Output (SIMO) DC-DC Converters

KAIST

Dept. of EECS, Circuit Design & System Application Laboratory

Motivation (1)

Why Multiple On-Chip supply?

- Different blocks require different supplies
- AMOLED display requires multiple supplies
- Voltage Scheduling scheme for effective power saving in digital circuit
- Performance improvement in analog & mixed signal systems

Background (1) – Boost converter and LDOs

- Advantages
 - Simple
 - Low ripple
 - Short time-to-market
- Disadvantages
 - Voltage drop → Low efficiency

Motivation (2)

Why SIMO converter?

- Single inductor : fewer magnetic components, fewer
 IC pins, lower cost, higher integration
- Fewer on-chip power devices
- → SIMO converter is a cost-effective solution !!

1) Concept of Proposed OPDC

	PCCM/DCM	OPDC
energy transfer per 1 switching cycle	1 per 1	All per 1
# PI compensator	# outputs	1
Output extension	difficult	easy

Existing PWM DC/DC Converters

- Output Voltage Feedback
- Output Cap. and I_O affect the Loop Response
- Compensator Design is NOT EASY

SIMO converter with OPDC

[Phuc.ISSCC2007, JSSC 2008]

- Comparator control method
- Only one PWM controller
- Easy output extension and high power capacity

EECS, KAIST

SIMO converter with OPDC

4 Positive boosted outputs + 1 dependent negative output

Measurement Results (1) - Normal operation

EECS, KAIST

Performance Summary

Technology	0.5 µm	Bi-CMOS	, t-well, 3	BAL, 1PS	
Chip area	2.9 x 3.0 mm ²				
Package	QFN, 24 pins, 5 x 5 mm ²				
Supply voltage	2.5 ~ 4.5 V (3.7 V, nominal)				
Inductor/ESR	10 μH / 350 mΩ				
Oscillator frequency	700 KHz (nominal)				
Current ripple	290 mA				
Maximum efficiency	80.8 % @ 450 mW total load power				
Output	Vo1	Vo2	Vo3	Vo4	VoN
Voltage (V)	10.2	7.0	7.5	8.0	- 9.5
Load current (max) (mA)	5	30	30	40	5
Load regulation (mV/mA)	1.5	0.78	0.5	0.4	х
Line regulation (mV/V)	58	73	85	90	80
Output ripple (max) (mV)	160	140	140	120	200
Filtering capacitor/ESR (μF/mΩ)	4.7/300	4.7/300	4.7/300	4.7/300	1/150

2) Proposed SIBO converter

Boost converter

➤ Adjustable charge-pump

- √ 2 inductors, 4 switches
- √ Two PI-control
- √ Bulky & Expensive

- √ 1 inductor, 3 switches
- ✓ Cost effective
- √ V_{OP}: Comparator control
- √ V_{ON}: PI-control

Implementation of SIBO converter

[Chae. ISSCC2007, JSSC 2009]

Modified Comparator Control (MCC) based on OPDC

V_{OP} control (Modified Comparator Control)

Measurement Results (1) - Normal operation

DCM operation

CCM operation

Performance Summary

Process	0.5μm Pow	er BiCMOS
Chip area	4.11	mm^2
Battery voltage range	2.7~4.5V (3.	7V, nominal)
Inductor / ESR	4.7μH /	320mΩ
Oscillator frequency	1MHz (1	nominal)
Maximum efficiency	82.	3%
Current ripple △	240	mA
Output voltages	$V_{OP}(4.58V)$	V _{on} (-6.24V)
Output ripples	15mV	5mV
Load regulation	0.25 mV/mA	1mV/mA
Line regulation	6mV/V	$18 \mathrm{mV/V}$
Filtering capacitors / ESR	4.7μF / 20mΩ	4.7μF / 20mΩ

3) Freewheeling Current Regulation

- Output Cap. and Load Current do NOT affect the Loop
- Compensator Design is EASY

Pros and Cons

Control Scheme	Loop Dynamics	Main Features
Direct Duty Control w/ Output Voltage Feedback	L, C _o	- Complex Compensation - Slow Response
Current Mode Control w/ Output Voltage Feedback	<u>L</u> , C _o	- Difficulty in Compensation for a Wide Load Range
Current Mode Control w/ Freewheeling Current Feedback	L, C _o	+ Load Independent+ Simple Wide-Bandwidth Control- Power Switch for Freewheeling- Small Decrease in Efficiency

Control of Multiple Output Converter

Measured Waveforms

Measured Waveforms

Measured Performance

Technology	0.5µm Power BiCMOS
Area	3.2mm ²
Supply Voltage	3.7V nominal (2.7 ~ 4.5V)
Inductor / ESR	10μH / 350mΩ
Switching Frequency	1MHz
Filtering Capacitor	10µF Tantal // 470nF Ceramic
Maximum Efficiency	81% *
Load Transient (No Load to 100mA)	$V_{o,pp}$ < 100mV, T_s < 20 μ s **

^{* 82.3%} achieved in [Chae, ISSCC07].

^{**} These values do not represent the best achievable results.

4) Vestigial Current Regulation

(Seol, ISSCC09)

- □ Auxiliary Output VA Feedback
- Output Cap. and I_o affect the Loop Response(LIC)
- □, Additional components are Needed

Implementation of Multiple Output Converter

- Vin: 2.8 ~ 4.5 V
- $V_{R,G,B}$: 2 ~ 9 V
- V_{SP}: Higher than V_R,_G,_B by 0.5 V (Lower limit 6.3V)
- \Box V_{DAC} : Higher than V_{SP} by 2V (Lower limit 8.3V)

Output switching control

- Averaging of outputs by simultaneous switching
- Discharging of inductor current by the averaged voltage
- Enforced averaging effect by the charging sharing between outputs
- Chaotic switching is alleviated by the averaging effect

Measurements Results

□ Normal operating waveforms

Performance Summary

Process	0.5μm 1P3M BiCMOS	
$\mathbf{f}_{\mathbf{SW}}$	1MHz	
$\mathbf{V_{DAC}}$	8 ~ 12V, 20mA	
$\mathbf{V}_{\mathbf{GP}}$	6 ~ 10V, 30mA	
$\mathbf{V}_{\mathbf{R,G,B}}$	2 ~ 9.5V, 25, 25, 45mA	
Accuracy	0.1 % [1.5%]*	
Line regulation	0.05 %/V** [1.04%/V]	
Load regulation	0.01 %/mA*** [0.015%/mA]	
Efficiency	83 % **** [80%]	

^{*[]} result of [2] ** V_{IN} = 2.5 to 4.5 V ***0mA to I_{load} @ V_{IN} = 3.7 V

^{**** @} V_{IN}= 3.7 V, Ref=6, I_{load}=25_R, 25_G, 45_B,30_{GP},10_{DAC}

5) Proposed Zero-Order Control

- □ Loop response is independent of *L* & *Co*
- \Box I_f is Zero in steady-state : No decreasing Power Efficiency
- □ Control Loop is Simple

The Role of V_{ST}

- Make Φ_P go to High even when deficient energy case
- V₅₇ causes small Offset Voltage corrected by MCC

Pros(+) and Cons(-) - ZOC

Control Scheme	Loop Dynamics	Main Features
FW Current Control	L, C _o	- Extra Energy- Power Switch for Freewheeling- Decrease in Efficiency
Auxiliary Output Voltage Control	L, C _o	+ Vestigial Current is returned- Extra Energy- Additional Components for VA
Zero-Order Control	L, C _o	+ Balanced Energy+ No Decrease in Efficiency+ No Additional Components

Measured Waveforms

Steady State - CCM

- □ *Load = 60mA*
- □ No FW period

Measured Waveforms

Load Transient

6) PLL based SIMO buck converter

- ✓ Switching frequency
 - Constant
 - High
- ✓ Switch control
 - Comparator control
 - PMB control
- ✓ Bang-bang control
 - Stable
 - Fast and accurate regulation

PMB Control (Vo6)

PMB: PLL-based Multiple-Output Bang-Bang

- ☑ In-Phase Voltage information of error voltage is reproduced by error amplifier (EA).
- ☑ Hysteresis comparator is implemented by the inverter and capacitor through the system delay.

Loop Analysis of the switching converter

Waveform at the Steady State

lo1 = 22mA, lo2 = 28mA,lo3 = 32mA,

104 = 20mA,

105 = 19mA,

106 = 30mA.

130mA, Io5 = 127mA.

7) Proposed SIBBIF Converter (Architecture)

Hybrid Energy Transfer Media

➤ Vg : Li-ion battery(2.7V ~ 4.5V), USB(5V)

➤ V_{OP}: 4.6V by boost or buck operation

➤ V_{ON}: -5.4V by inverting flyback operation

Calculated peak current comparison

Simulated efficiency comparison

Proposed SIBBIF Converter

Block Diagram

Multi Level Gate Driver

MLGD is to reduce switching loss

- ➤ To reduce the conduction loss, V_{GS} is applied as large as possible
- It inevitably increases switching loss

Multi Level Driving Voltages

Multi Level Gate Driver for S_{PM}

Multi Level Gate Driver for S_{NM}

Measurement Results

Performance Summary

Process	0.5μm BCD 1P 3M		
Supple voltage	2.7V to 4.5V & 5V(USB)		
Frequency	1.25 MHz		
Max efficiency	87.1 %@600mW		
Output	V _{OP}	V _{ON}	
Voltage	4.6V	-5.4V	
Max Power	3W		
Line regulation	0.3 %/V	0.14 %/V	
Load regulation	0.12V/A	0.2V/A	
Output ripple	50mV@300mA	60mV@300mA	

Summary

- □ New topology about SIMO DC-DC Converter
 - Cost effective solution
 - AM-OLED Display application
 - Focus on high stability
 - Focus on high efficiency

- □ New control method about SIMO DC-DC Converter
 - Focus load independent stability

Thank You