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Introduction (1/2) 

• Current 
• Voltage 

• Current 
• Voltage 

• PWM 

• TRG 
• ARG 

 Data driving schemes for AMOLED displays 
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Introduction (2/2) 

Conventional Driving Scheme 
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 Data driving schemes for AMOLED displays 

High Speed Analog Current Driving Method 
High Driving Accuracy & Speed Current Feedback Method 
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Part I 

 

Current-mode AMOLED Drivers: 
DFFC (Direct-type Fast Feedback Current) Driver 



EECS, KAIST 
Circuit Design & System Application Laboratory 

Block Diagram for FFCD 

 Conceptual diagrams for Fast Feedback Current Driver(FFCD) 

Feedback driver : Current sensing & comparison,  
    loop compensator and error amp. 
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Loop Gain with Full IDATA Range 
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Measurement Result (Data Transition) 
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 Data current range from 10nA to 2.55A 
 Settling time < 11s 
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Part II 

 

Current-mode AMOLED Drivers: 
TCF (Transient Current Feedforward) Driver 



EECS, KAIST 
Circuit Design & System Application Laboratory 

TCFD (1/15) 

Introduction of the TCC 
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TCFD (2/15) 

Realization of the TCC 
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TCFD (3/15) 
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TCFD (4/15) 

19/31 
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TCFD (5/15) 
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TCFD (6/15) 
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TCFD (7/15) 

0dB 0dB 

LG < 0dB !! 
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TCFD (9/15) 
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Part III 

 

Current-mode AMOLED Drivers: 
PP-TCF (Push-Pull Transient Current Feedforward) 

Driver 
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-Complete push-pull function for output currents 
-PFB gain control for removing undulation phenomena in pixel 
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PP-TCF Data Driver (1/15)  
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PP-TCF Data Driver (2/15)  
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PP-TCF Data Driver (4/15)  
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 Functional Diagram of Prototype Driver IC 
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PP-TCF Data Driver (5/15)  

PFB gain control for removing undulation phenomena in pixel currents 

 Positive Feedback Loop (PFB) Gain Control (1) 
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PFB gain control for enhancing pixel current settling 
(IDATA= 3uA, panel parasitic 2kOhm/ 60pF) 
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PP-TCF Data Driver (7/15)  

Simulated driving waveforms with/ without PFB gain control 
(IDATA= 1 to 5uA, panel parasitic 2kOhm/ 60pF) 
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PP-TCF Data Driver (8/15)  
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Complete push-pull function for output currents 

 Current Pulling Function for Enhancing Data Current Settlement (1) 
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PP-TCF Data Driver (9/15)  
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 Current Pulling Function for Enhancing Data Current Settlement (2) 
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 Measurement results (1) 

Pixel current settling times improved by current pulling function 
(IDATA transitions from 4.98uA to 60nA, VPRC= 0.4 to 1.2V, 0.2V step, 
panel parasitic 4kOhm/ 90pF) 

PP-TCF Data Driver (12/15)  
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 Measurement results (3) 

Waveforms for various data current levels: High to low transitions and low to 
high transitions of data currents (data current = 20nA to 4.98uA, VPRC= 0.7V, 
parasitic load = 4kOhm/ 90pF) 
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PP-TCF Data Driver (14/15)  
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 Performance summary 

 Appropriate for FHD AMOLED displays 
-Low power consumption 
-Stable operation at high data currents 

Process 0.35 m CMOS (1P 4M)

Operation voltage 3.3 V

Data current range 20 nA to 4.98 A

Gray scale 8 bit (16.8 million colors)

Maximum driving load

(Panel parasitics)
4 kW / 90 pF (Full-HD)

Settling time  6 s

Static current 4.5 A / Channel

Occupation area 60  308 m2 / 2 Channels

PP-TCF Data Driver (15/15)  
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Part IV 

 

Real-time Image Sticking Compensation  

using Current Driving  

 

 



OLED Degradation 

37 

 Differential aging dependent on sub-pixel. 
 Prolonged display of static image (burn-in) 
 RGB have different degradation curves. 

Burn-in Discoloration 
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Conventional Image Sticking Compensation 

<기존 전압 구동용 IS 보상회로> 

 TFT variation 문제를 해결하더라도, OLED 소자 자체의 시변 열화 특성으로 인

해 잔상(Image Sticking)효과를 유발. 

 OLED의 양단 전압이 열화에 따라 증가하는 현상을 이용한 Electrical Feedback 

방식이 연구되고 있음. 

 기존 연구 방식들은 모두 전압 구동용 보상회로 
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OLED Degradation Sensing 

<OLED degradation Sensing> 
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Real-time Compensation using Current Driving (2/7) 

Compensation Method 

using Voltage Driving 

Real-time Compensation 

using Current Driving 

보상전류 별도의 큰 전류 작은 데이터 전류 

열화 가속 Fast Slow 

메모리  

크기 

Large 

(Vth, , OLED) 

기존의 1/3 이상 감소 

(OLED) 

보상시간 Long time Real time 

 IS 보상 방식 비교 
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Real-time Compensation using Current Driving (3/7) 

 1:2 DeMUX operation 

 Track and Hold type pixel 

 TCF driver 

 Current DAC with Reference Current Calibrator 



Hybrid Data Driver 

42 

1. Read data-line voltage by ADC (OLED compensation) 
2. Store by line voltage information of each pixel at memory 
3. 1, VDAC & Amp. pre-charge data-line by pre-stored information.  
4. 2, CDAC provides data current to pixel. (TFT compensation) 

Data line 



Block Diagram of Hybrid Data Driver 
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Real-time Compensation using Dual Data Driving (3/4) 
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VREF∙ 

 Pre-charging voltage is made by using CDAC at each channel.  

 Implementation 



Digital Processing Algorithm 

Digital Processing Algorithm 
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 DATA1 and DATA2 for hybrid data driving 
 α-LUT for OLED compensation 



Data Transition 

 Data driving waveforms for various current levels 
 High current level (1uA~ 5uA, 1uA step) 

Driving 
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tS : settling time within 0.5LSB

1LSB = 5nAtS ≤ 5s
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Data Transition 

 Data driving waveforms for various current levels 
 Low current level (5nA~ 40nA) 

Driving 

Start

1 : 5s tS : settling time within 0.5LSB
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Parameter Variation  
with Degradation Rate 

 Changes of IDATA2 and ΔVOLED by compensation algorithm 
 IDATA2 @ α=0% =100nA 

Degradation Rate () 
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Summary 

 Feedforward (TCF, ITCF, PP-TCF) drivers  
 Full range of data currents from sub-10nA to 5A  
 Various panel load condition from XGA to FHD-sized panel  

 Feedback (DFFC) driver   
 Range of data currents from 10nA to 2.55uA  
 WXGA-sized panel load of 1.5kOhm/ 100pF. 

 Real-time image sticking compensation methods  
 Compensate the luminance degradation of OLEDs  
 Compensate the variation of the driving TFT by current driving 
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Single-Inductor Multiple-Output (SIMO) 

DC-DC Converters 



51/115 

Motivation (1) 

 Different blocks require different supplies 

 AMOLED display requires multiple supplies 

 Voltage Scheduling scheme for effective power 

saving in digital circuit 

 Performance improvement in analog & mixed 

signal systems 

 Why Multiple On-Chip supply ? 



52/115 

Background (1) – Boost converter and LDOs 
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Motivation (2) 

 Single inductor : fewer magnetic components, fewer 

IC pins, lower cost, higher integration 
 

 Fewer on-chip power devices 

 

 Why SIMO converter ? 

 SIMO converter is a cost-effective solution !! 

SIMO converter 

53/115 
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1) Concept of Proposed OPDC 

PCCM/DCM OPDC 

energy transfer per 1 switching cycle 1 per 1  All per 1 

# PI compensator # outputs 1 

Output extension difficult easy 

54/115 



Existing PWM DC/DC Converters 

• Output Voltage Feedback 

• Output Cap. and IO affect the Loop Response 

• Compensator Design is NOT EASY 

Vref Gc (s) Controller 

Vg Vo 

L 

RL 

Switch 

Network Io 

55/35 
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SIMO converter with OPDC 

 Comparator control method 

 Only one PWM controller 

 Easy output extension and high power capacity 

[Phuc.ISSCC2007, JSSC 2008] 

56/115 
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SIMO converter with OPDC 

 4 Positive boosted outputs + 1 dependent negative output 

57/115 
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Measurement Results (1) – Normal operation 

DCM CCM 

Boundary of DCM/CCM Boundary of DCM/CCM 

58/115 
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Performance Summary 

59/115 
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 Boost converter 

 Adjustable charge-pump 

 2 inductors, 4 switches 

 Two PI-control  

 Bulky & Expensive 

 1 inductor, 3 switches 

 Cost effective 

 VOP : Comparator control 

 VON : PI-control  

 SIBO converter 

2) Proposed SIBO converter 

60/115 
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Implementation of SIBO converter 

[Chae. ISSCC2007, JSSC 2009] 

 Modified Comparator Control (MCC) based on OPDC 

61/115 
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V
OP

 control (Modified Comparator Control) 
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DCM operation CCM operation 

IOP=ION=20mA @ Vg=3.7V 

Freewheel switching 

IOP=ION=35mA @ Vg=3.7V 

No Freewheel switching 

Measurement Results (1) – Normal operation 
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Performance Summary 
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3) Freewheeling Current Regulation 

Vg 

S 

R 

Q 
Ioffset 

Gcf (s) 

Vo 

Vref 

L 

If 

Vx 

Q vnb 

vn 

Ifs 

• Output Cap. and Load Current do NOT affect the Loop 

• Compensator Design is EASY 

 Freewheeling Current Feedback 

 Output is Comparator-controlled 

RL 

Io 

Ic 
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Pros and Cons 

Control Scheme 
Loop 

Dynamics 
Main Features 

Direct Duty Control 

w/ Output Voltage 

Feedback 

L, Co 

- Complex Compensation 

- Slow Response 

Current Mode Control  

w/ Output Voltage 

Feedback 

L, Co 

- Difficulty in Compensation for a 

Wide Load Range 

Current Mode Control 

w/ Freewheeling  

Current Feedback 

L, Co 

+ Load Independent 

+ Simple Wide-Bandwidth Control 

- Power Switch for Freewheeling 

- Small Decrease in Efficiency 
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Control of Multiple Output Converter 

Vg 

S 

R 

Q 
Ioffset 

Gcf (s) 

Vo1 

Vref1 

L 

If 

Vx 

Q vnb 

vn 

Vo2 

Vref2 

Mn 

Mf 

Ifs 

• No. of    outputs can be increased easily 
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Measured Waveforms 

Io 

Vop 

Vop,ac 

IL 

100mA 

0A 

Load Transient 

Ts < 20µs Vpp < 100mV 
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Measured Waveforms 

Vx 

Vop 

Von 

IL 

Iop = Ion = 23mA 

Steady State 
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Measured Performance 

Technology 0.5µm Power BiCMOS 

Area 3.2mm2 

Supply Voltage 3.7V nominal (2.7 ~ 4.5V) 

Inductor / ESR 10µH / 350mW 

Switching Frequency 1MHz 

Filtering Capacitor 10µF Tantal // 470nF Ceramic 

Maximum Efficiency  81% * 

Load Transient 

(No Load to 100mA) 
Vo,pp < 100mV, Ts < 20µs ** 

* 82.3% achieved in [Chae, ISSCC07]. 

** These values do not represent the best achievable results. 
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4) Vestigial Current Regulation 

(Seol, ISSCC09)  

Vo_x
S1

+

- Vref1

EA
+

-

+

-
R

S

Q Vin+Vd

Vin

VA

(Vd=1V)

C2

L2

L1

D2

Sd

Sf
Sn

 Auxiliary Output VA Feedback 

 Output Cap. and IO affect the Loop Response(LIC) 

 Additional components are Needed 



EECS, KAIST 
Circuit Design & System Application Laboratory 

Implementation of Multiple Output Converter 

• Vin: 2.8 ~ 4.5 V 

• VR,G,B: 2 ~ 9 V  

• VSP: Higher than  VR,G,B by 0.5 V 

(Lower limit 6.3V) 

 VDAC: Higher than VSP by 2V (Lower limit 8.3V) 
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Output switching control 

 Averaging of outputs by simultaneous switching 

 Discharging of inductor current by the averaged voltage 

 Enforced averaging effect by the charging sharing between outputs 

 Chaotic switching is alleviated by the averaging effect 

 Slightly different outputs 

 Simultaneous Turn on &Sequential Turn off 
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Measurements Results 

 Normal operating waveforms 

<Step up> <Step down> 

VIN=3.7V ,Ref_R,G,B=6V

VDAC VA 

VR,G,B VGP 

VA

VR

LX

IL

VIN=4.5V ,Ref_R,G,B=2V

VDAC VA 

VR,G,B 
VGP 

VA

VR

LX

IL

4.9V 

6.0V 

5.7V 

2.0V 
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Performance Summary 

fSW 1MHz

VDAC

VGP

VR,G,B

8 ~ 12V, 20mA

Process 0.5μm 1P3M BiCMOS

6 ~ 10V, 30mA

2 ~ 9.5V, 25, 25, 45mA

Accuracy 0.1 %    [1.5%]*

Line regulation 0.05 %/V**   [1.04%/V]

**VIN= 2.5 to 4.5 V 

Load regulation 0.01 %/mA***   [0.015%/mA]

Efficiency 83 % **** [80%]

****@ VIN= 3.7 V, Ref=6, I_load=25_R, 25_G, 45_B,30_GP,10_DAC

***0mA to I_load  @VIN= 3.7 V*[] result of [2] 

75/115 



76/35 

5) Proposed Zero-Order Control 

Vg 

S 

R 

Q 

VIC 

Control 

Vo 

VREF L 

Vx 

Q 

ΦN 

RL 

VIC 

ΦN 

ΦP UP 

DOWN 

VST 

VISN 

VOX 

Mf 

Mn 

 Loop response is independent of L & Co 

 If is Zero in steady-state : No decreasing Power Efficiency 

 Control Loop is Simple 

Co 

If 
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The Role of VST 

• Make ΦP go to High even when deficient energy case  

• VST  causes small Offset Voltage – corrected by MCC 

VISN

VIC

VO

(enlarged)

VOX

VREF

VREF

VST

ΦN

ΦP

ΦW

ID

IW

DOWN

UP

Excessive Energy Deficient Energy 

 VOX : 200mV 

 Larger than 

VO’s Ripple 
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Pros(+) and Cons(-) - ZOC 

Control Scheme 
Loop 

Dynamics 
Main Features 

FW Current 

Control 
L, Co 

- Extra Energy 

- Power Switch for Freewheeling 

- Decrease in Efficiency 

Auxiliary Output 

Voltage Control 
L, Co 

+ Vestigial Current is returned 

- Extra Energy 

- Additional Components for VA 

Zero-Order 

Control 
L, Co 

+ Balanced Energy 

+ No Decrease in Efficiency 

+ No Additional Components 
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Measured Waveforms 

VX 

VOUT 

IL 

 Load = 60mA 

 No FW period 

Steady State - CCM 
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Measured Waveforms 

Load 

IL 

300mA 
60mA 

Load Transient 

Vpp < 50mV 

80µs 180µs 

VOUT(AC) 



6) PLL based SIMO buck converter 

 Switching frequency 

     - Constant 

     - High 

 Switch control 

     - Comparator control  

     - PMB control 

 Bang-bang control 

     - Stable 

     - Fast and accurate regulation 
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PMB Control (Vo6) 

In-Phase Voltage  information of error voltage is 
reproduced by error amplifier (EA). 

Hysteresis comparator is implemented by the inverter 
and capacitor through the system delay. 

PMB : PLL-based Multiple-Output Bang-Bang 
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Loop Analysis of the switching converter 
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Io1 = 22mA, 

Io2 = 28mA, 

Io3 = 32mA,  

Io4 = 20mA, 

Io5 = 19mA, 

Io6 = 30mA. 

Io1 = 

100mA, Io2 

= 130mA, 

Io3 = 

100mA,  

Io4 = 

130mA, Io5 

= 127mA, 

Io6 = 111mA. 

Waveform at the Steady State  
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7) Proposed SIBBIF Converter (Architecture) 

Hybrid Energy Transfer Media 

 

 Vg : Li-ion battery(2.7V ~ 4.5V), USB(5V) 

 VOP : 4.6V by boost or buck operation 

 VON : -5.4V by inverting flyback operation  

L VOP

VON

S1

S2CF COP

CON
S3

D1

D2

+

+

+

Vg 



Calculated peak current comparison 
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Proposed SIBBIF Converter 

Block Diagram 

Peak current sensor

+ Artificial Ramp    

           (D>0.5)

+

-

Switch Control 

Logic

Multi Level 

Gate Driver

Oscillator

Pulse Skip 

Logic

Vg
VOP (4.6V)

VON (-5.4V)

VREF

VREF

Hybrid Energy Transfer Media

Dead Zone 

ETC

L

CF

SPM

SPA

SNM

COP

CON

CIN

DP

DN

AM OLED Pixel

Soft 

start

OVP

VX1

Hybrid Fast 

Transient 

Control

||

Enhanced 

Transient 

PI control

+

Comparator 

Control

VX2
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Multi Level Gate Driver 

MLGD is to reduce switching loss 

 To reduce the conduction loss, VGS is applied as large as 

possible 

 It inevitably increases switching loss 

VOP 
L

SNM

DP

V g

Vg

Vg

GND

2

1

Time

SggSW FVCP 
2

)1(

SggSW FVCP 2)
2

1
()2( 2 

Conventional Gate Driving

Multi Level Gate Driving
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DN

VOP 

VON 

L

CF

SPM

SPA

SNM
DP

V g

+

_
V g

Multi Level Driving Voltages 

Time

VON(-5.4V)

Gate voltage of SPM

VOP(4.6V)

Vg(3.7V)

GND

VON(-5.4V)

VOP(4.6V)

Vg(3.7V)

GND

Gate voltage of SPA

Time

Time

VON(-5.4V)

VOP(4.6V)

Vg(3.7V)

GND
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Multi Level Gate Driver for SPM 

Vg = 3.7V

Time

VON = -5.4V

GND

D1

VPM

Vg

VON

VON

IN

TD

TD
VON

VOP

Vg

VPM

VX

CF

COP

CON

SPM

SPA

SNM

D1

MP4

MN2 MP5

MP6

MN3

Switch Size: SPM > SPA > SNM
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Multi Level Gate Driver for SNM 

Body bias of the MP1 and MP2  

is selected as the largest 

voltage between Vg and VOP 

VOP
Vg

VB
VB

VOP

Vg

Auto Body Bias Selector

VN1

VNM

MP1

MP2

VON(-5.4V)

VOP(4.6V)

Vg(3.7V)

GND

VNM
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Measurement Results 

VOP

VON

VX1

IL

Vg = 3.7V no load (Pulse skip) Vg = 3.3V     load = 30mA (DCM)  

Vg

VON+VgVOP

VON

VX1

Vg

VON+Vg

Vg = 4.2V     load = 100mA (CCM) 

VOP

VON

VX1

Vg = 5.0V   load = 290mA (CCM) 

VOP

VON

IL
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Process 0.5m BCD 1P 3M 

Supple voltage 2.7V to 4.5V & 5V(USB)

Frequency 1.25 MHz

Max efficiency 87.1 %@600mW

Output VOP VON

Line regulation 0.3 %/V 0.14 %/V

Load regulation 0.12V/A 0.2V/A

Output ripple 50mV@300mA 60mV@300mA

Max Power 3W

Voltage 4.6V -5.4V

Performance Summary 
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Summary 

 New topology about SIMO DC-DC Converter 

– Cost effective solution 

– AM-OLED Display application  

– Focus on high stability 

– Focus on high efficiency 

 

 New control method about SIMO DC-DC Converter 

– Focus load independent stability 
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Thank You 


