

CMOS Image Sensors in Cell Phones, Cars and Beyond

BYD Microelectronics (BME) is a subsidiary of BYD Company Limited, Shenzhen, China. Formed in 2004, BME focuses on CMOS image sensors, touch solutions, power management IC, and power devices.

CMOS Image Sensor (CIS) Markets

CIS Applications and Requirements

CIS Technical Efforts

CIS Shipment Forecast

Source: Yole Development

- A compound annual growth rate of 11%, from \$6.6 billion in 2012 to \$2017 in 11 billion
- Wide range of diversified applications for integrated CMOS image sensors
- 500K wafers/moth capacity
- The new and emerging applications (tablets, cars, and smart TV and appliance, etc) at much higher growth rate

CMOS Image Sensor Applications

Source: Yole Development

- Spectrum of applications from high volume/cost sensitive to low volume/performance driven
- Three areas are most active in demand, growth and innovation
- Solution requirements at chip architecture, circuit design, packaging and wafer process

Higher Resolution

Nokia 808

41.0M

Requirements and responses:

➤ Higher resolution for differentiation with more pixel counts

Digital zoom

2000

Resolution

Camera Module Smaller

iPhone 5s at 7.3mm

- 8M camera w/ 5M front camera
- 5" LCD display

Sensor Pixel Size Smaller

Reduced pixel sizes are needed to meet higher resolution and shorter module

Module Height:

Resolution	Pixel Size (μm)	Module Height(mm)	
VGA(BF3903)	2.0×2.0	2.6	
5MP (FF,BF3A50,FSI)	1.4×1.4	4.7	
8MP (AF, Sony, BSI)	1.1×1.1	4.9	

Sensor Performance Challenge

Resolution	VGA	VGA	VGA	720P	2MP	5MP	
Pixel Size(μm)	6.0×6.0	3.15×3.15	2.25×2.25	1.9×1.9	1.75×1.75	1.4×1.4	
Fill Factor	56%	46%	45%	42%	43%	30%	

Smaller pixel area, lower fill factor bring poor low light performance:

low light performance

New process improvement:

Sensor Cost Efforts

	Resolution	Process	Pixel Size (μm)	Die numbers (pcs)
	VGA(BF3403)	0.18µm	2.8×2.8	2618
	VGA(BF3703)	0.13μm	2.25×2.25	4784
	VGA(BF3903)	0.13μm	2.0×2.0	5524
	2MP(BF3920)	0.13μm	1.75×1.75	1716
8" Wafer (CMOS Image Sensor)	5MP(BF3A50)	0.11μm	1.4×1.4	1134

Cost reduction through wafer process and design improvement

Demanding Automotive Conditions

Natural requirements	Difficulties or needs	Approaches	
Low light and night	Low light sensitivity	Passive/active	
Fog, rain, or snow	Low visibility	Gated imaging	
High speed	Image blurring	Sensitivity/frame rate	
High contrast	High beams, sun	Design/compensation	
High temperature	High sensor noise	Design/process	
High resolution	Object recognition	Design/process	
Distance sensing	Collision warning	TOF, stereo vision	

Visual Assistance

- The national highway traffic safety administration (NHTSA) proposed a mandate by September 2014 all vehicles sold in the USA must have a rearview system
- However, there are concerns expressed by automakers of the costs associated with implementing proposed new standards

The panoramic and rearview systems on BYD minivan M6

4 cameras on BYD minivan M6

BYD Night Vision

According to the US national highway traffic safety administration (NHTSA) statistics, while driving at night time only accounts for a quarter of total drive time, but an accident causing death rate accounts for 1/2.

Active system:

- IR assisted
- CMOS image sensor
- > High dynamic sensing
- Power modulated

High Dynamic Range

• Exposure for interior

- ➤ Imager allows more details in both the bright and dark areas
- **➤** Without assisting light
- > Real time and video form

Exposure for outdoor

Improved dynamic range by a BYD sensor

Intelligent Automobile

The automobiles are becoming more intelligent both for ease of driving and safety.

Requirements from CIS:

- ➤ Object recognition
- ➤ Range sensing (optional by other means)
- ➤ All weather and day/night conditions

Google driverless car

Resolution and Frame Rate

➤ Global shutter, or high frame rate

Rolling Shutter Effect

CIS with rolling shutter exposes each line of pixels at different time, deforming the images of moving objects (with global shutter being the solution)

BYD What To Do With CIS

➤ Anti-fog, rain or snow

➤ Anti-blooming

CIS Basic Architecture

BYD NTSC/PAL VGA

BYD 5MP

To meet the application needs,

- ➤ Wafer processes toward finer features, lower leakage, broader spectral response
- > Pixels with better fill factors, global switching, other functions
- > Periphery circuits with faster gain, parallel ADC

FSI With Light Guide

Light Guide Process

Standard FSI

FSI with Light guide

Better sensitivity and uniformity

- Sensitivity improvement of 25-45%
- Uniformity improvement of 30%

ביים Light Guide & Deep Photo Diode

Deep Photo Diode Process

Full well & SNR improvement

Standard Photo Diode	Deep Photo Diode	Light guide + Deep Photo Diode		
Microlens & Planarization Color Filter Passivation Metal Oxide Layers Pheto diode Silicon E e e e	Microlens & Planarization Color Filter Passivation Metal Oxide Layers Deep Photo Dook C a Siligin	Incident Light Microlens & Planarization Color Filter Passivation LIGHT GUIDE Metal Oxide Layers Deep Photo Diode Silicon		
Full well ~4000e SNR ~36dB	Full well ~6000e SNR ~38dB	QE ~50% Sensitivity ~600mV/Lux.sec Full well ~6000e SNR ~38dB		

Backside Illumination (BSI)

Backside illumination:

- > Improved fill factor
- Quantum efficiency and SNR improvement
- > Improved crosstalk and corner response

BSI image sensor accounted for 25% of total sales of CIS. The market share is expected to rise to above 70% in 2017, operating income increased to \$ 7.7 billion.

➤ Higher sensitivity with 1.12um RGBW pixel equivalent to RGB 1.4um size pixel

Pixel and Array Architecture

Standard

- ➤ High fill factor
- ➤ Limited frame rate
- ➤ Small pixel

Column-parallel

- ➤ High fill factor
- > Fast and accurate
- **≻**Low power
- ➤ Medium or small pixel size
- ➤ Column digitization

Pixel-parallel

- ➤ Low fill factor
- ➤ High throughput
- ➤ Special applications
- ➤ Large pixel size

Global Shutter

4T pixel

Frame readout time
Exposure Time

Flash occurs here

Frame readout time
Exposure Time

Flash occurs here

Rolling shutter Global shutter Rolling shutter Rolling shutter VDDCS VDDCS VDDCS VDDCS SX Global shutter

- Global shutter solves the problem of image tilting of moving objects by rolling shutter imagers
- Smaller fill factors in the pixel due to one or more transistors inside

5T pixel

High Dynamic Range

large pixel and small pixel

Fujifilm FinePix S3 Pro (CCD, 2004)

HDR on

HDR off

Intral frame & Inter frame

Single-frame HDR: Captures lines of an image with different exposure times simultaneously and composes them into a single HDR image

Advantage: Support of video and little cost overhead

Disadvantage: Limited improvement

Multi-frame HDR: Composes multiple frames captured with different exposure times into a single HDR image.

Long-exposure frame

Short-exposure frame

HDR image

ter result

Advantage: Unlimited frames with better result Disadvantage: Motion blur, limited to still imaging

- ➤ CMOS image sensors for cellphones and automobiles/ surveillance present exciting but different types of challenges
- ➤ Collective efforts in wafer processing, imager design and system applications are providing end users better solutions
- > There are areas that need technical solutions, especially for the automotive applications.

Questions?

Thanks

